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Abstract

An encompassing aeroelastic model developed toward investigating the influence of directionality property of

advanced composite materials and non-classical effects such as transverse shear and warping restraint on the aeroelastic

instability of composite aircraft wings is presented. Within the model developed herein, both divergence and flutter

instabilities are simultaneously addressed. The aircraft wing is modelled as an anisotropic composite thin-walled beam

featuring circumferentially asymmetric stiffness lay-up that generates, for the problem at hand, elastic coupling among

plunging, pitching and transverse shear motions. The unsteady incompressible aerodynamics used here is based on the

concept of indicial functions. Issues related to aeroelastic instability are discussed, the influence of warping restraint and

transverse shear on the critical speed are evaluated, and pertinent conclusions are outlined.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

With the stringent demands of increased performance and larger structural flexibility featured by the new generation

of aerovehicles, issues involving aeroelastic behavior are among the most crucial factors toward their reliable design

(Weisshaar, 1980). Due to their high structural efficiency and vast potential advantages, thin-walled structures made of

anisotropic composite materials are likely to be widely used in advanced aircraft design. This was evidenced by the

successful design of Gruman X-29 swept-forward wing experimental aircraft and the interest in high-altitude-long-

endurance (HALE) uninhabited aerial vehicles (UAVs) (Patil and Hodges, 2000). However, in contrast to metallic

structures, the composite ones exhibit significant non-classical effects such as transverse shear, warping restraint and

shear stiffness variation (see, e.g., Librescu and Song, 1992; Jung et al., 1999; Song, 1990; Rehfield et al., 1990; Smith

and Chopra, 1991; Librescu and Song, 1991; Song and Librescu, 1993; Na, 1997; Kim and White, 1997). Toward a

reliable aeroelastic design of flight vehicles, these effects need to be assessed even in the pre-design process. In fact,

within the context of solid beam or plate-beam models, the implications of transverse shear and warping restraint

effects on the static divergence and flutter have been evaluated by Gern and Librescu (1998, 2000), Karpouzion and

Librescu (1996), Librescu and Khdeir (1988), Librescu et al. (1996), Librescu and Simovich (1988) and Librescu and

Thangjitham (1991); within the context of thin-walled beam models, Librescu and Song (1992), Song (1990), Librescu

and Song (1991), Song and Librescu (1993) and Librescu et al. (1996) have investigated these effects on static divergence

and free vibration; whereas within the context of a refined plate-beam model, Hwu and Tsai (2002) have investigated

these effects on static divergence. As revealed in these works, non-classical effects play a complex role, and in some cases

yield lower aeroelastic stability boundaries as compared with the predictions based on the classical structural model that
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discards transverse shear effect. Consequently, a better understanding of these effects constitutes a vital requirement

toward a more reliable design of such types of structure. Since the aircraft design is primarily based on the principle of

thin-walled beams (see, e.g., Bruhn, 1973), it is desirable to investigate the aeroelastic instability directly within the

frame of thin-walled beam models. As far as the authors of this paper are aware, there are only a few papers in the open

literature where the concept of thin-walled beams was used to study the aeroelastic instabilities. Within this study, a
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Nomenclature

aij 1-D stiffness coefficients

aðsÞ geometric quantity, related to the secondary warping (see Fig. 2)

AR wing aspect ratio, L=b

2b; 2d width and depth of the beam cross-section, respectively

b1 inertia coefficient (see Appendix A)

CLf local lift curve slope

Fw primary warping function (see Eq. (3))

FW+TSfree warping model, transverse shear incorporated

Gsy effective membrane shear stiffness

hðkÞ; h thickness of the kth layer and of the beam wall, respectively

j
ffiffiffiffiffiffiffi
�1

p
Kij reduced stiffness coefficients

L wing semi-span

Lae;Tae unsteady aerodynamic loads

m number of truncated modes used for the calculation

n number of aerodynamic lag terms used in the approximation of Wagner’s function

N number of polynomials used in the shape functions

UN streamwise free stream speed

Un chordwise free stream speed, UN cosL
Vcr the most critical flight speed

VF streamwise flutter speed

w0;f deflection, rotation about the reference axis, respectively

#w0; #f; #yx nondimensionalized counterpart of w0;f; yx; respectively
WR+TSwarping restraint model, transverse shear incorporated

WR+NTR warping restrain model, transverse shear discarded

XT transpose of the matrix or vector X

Xm�n X is a m � n matrix

g damping ratio

yx rotation of the cross-section about the x-axis

½7yn1=7yn2 �s symmetric stacking sequence
L geometric sweep angle (see Fig. 1)

r
N

mass density of the free stream

t nondimensional time variable, Unt=b

fW Wagner’s function
#Cw; #Cf; #Cx admissible shape functions vectors with dimension N � 1

ohr reference frequency,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a33=ðb1L4Þ

p
jy ¼ p=2H

C
;
R L

0 integrals along the cross-section and the span, respectivelyR b

�b
airfoil integral

ð ’ð	Þ; .ð	ÞÞ ð@ð	Þ=@t; @2ð	Þ=@2tÞ
’ð#	Þ @ð	Þ=@t
ðð	Þ0; ð	Þ00Þ ð@ð	Þ=@y; @2ð	Þ=@y2Þ
ðð	Þ000; ð	ÞðIVÞÞ ð@3ð	Þ=@y3; @4ð	Þ=@y4Þ
ð ’ð#	Þ0; ’ð#	Þ00Þ ð@ ’ð#	Þ=@Z; @2 ’ð#	Þ=@Z2Þ
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refined thin-walled beam model primarily developed by Song (1990), Librescu and Song (1991), Song and Librescu

(1993), Na (1997) and Bhaskar and Librescu (1995) is adopted and, based on it, the non-classical effects such as

transverse shear and warping restraint on free vibration, divergence and flutter instabilities are investigated. As to the

research work accomplished during the last two decades on the modelling of composite thin-walled beams, see recent

review papers by Jung et al. (1999), Volovoi et al. (1999) and the references therein. In order to be reasonably self-

contained, the basic ingredients related to this refined thin-walled beam model will be presented in the next section.

2. Formulation of the governing system

2.1. Structural model

Toward the study of aeroelastic instability of advanced aircraft wings, the concept of single-cell, closed cross-section,

fiber-reinforced composite thin-walled beams is used. Due to their importance as revealed by Librescu and Song (1992),

Jung et al. (1999), Song (1990), Karpouzion and Librescu (1996), Gern and Librescu (1998), Librescu et al. (1996), Gern

and Librescu (2000), Librescu and Simovich (1988), Librescu and Khdeir (1988) and Librescu and Thangjitham (1991),

a number of non-classical effects have to be considered, which include transverse shear, warping restraint (see, e.g., Jung

et al., 1999; Song, 1990; Rehfield et al., 1990; Smith and Chopra, 1991; Kim and White, 1997), and 3-D strain effects

(see, e.g., Smith and Chopra, 1991; Kim and White, 1997; Bhaskar and Librescu, 1995). It is noted that in the earlier

formulation of the beam theory developed by Song (1990), Librescu and Song (1991), Song and Librescu (1993), the

variation of contour-wise shear stiffness was not included. Later on, the theory was extended to account for these effects

by Bhaskar and Librescu (1995). For the geometric configuration and the chosen coordinate system that is usually

adopted in the analysis of aircraft wings, see Figs. 1 and 2. Based on the basic assumptions adopted by Song (1990),

Librescu and Song (1991), Song and Librescu (1993) and Bhaskar and Librescu (1995), the following representation of

the 3-D displacement quantities is postulated:

uðx; y; z; tÞ ¼ u0ðy; tÞ þ zfðy; tÞ; ð1aÞ

vðx; y; z; tÞ ¼ v0ðy; tÞ þ xðsÞ � n
dz

ds

� �
yzðy; tÞ þ zðsÞ þ n

dx

ds

� �
yxðy; tÞ � ½FwðsÞ þ naðsÞ�f0ðy; tÞ; ð1bÞ

wðx; y; z; tÞ ¼ w0ðy; tÞ � xfðy; tÞ; ð1cÞ

where

yxðy; tÞ ¼ gyzðy; tÞ � w0
0ðy; tÞ; ð2aÞ

yzðy; tÞ ¼ gxyðy; tÞ � u00ðy; tÞ; ð2bÞ

aðsÞ ¼ � z
dz

ds
þ x

dx

ds

� �
: ð2cÞ
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Fig. 1. Geometry of an aircraft wing modelled as thin-walled beam.
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In Eqs. (1) and (2), yxðy; tÞ; yzðy; tÞ and fðy; tÞ denote rotations of the cross-section about the axes x; z and the twist
about the y-axis, respectively, gyzðy; tÞ and gxyðy; tÞ denote the transverse shear strains, while aðsÞ is related to the
secondary warping.

The primary warping function is expressed as

FwðsÞ ¼
Z s

0

½rnðsÞ �YðsÞ� ds; ð3Þ

where the torsional function YðsÞ and the quantity rnðsÞ are given by

YðsÞ ¼

H
C

rnð%sÞ d%s

hðsÞGsyðsÞ
H

C
½hð%sÞGsyð%sÞ��1 d%s

; rnðsÞ ¼ z
dx

ds
� x

dz

ds
: ð4Þ

In Eq. (4), Gsy is the effective membrane shear stiffness, which is defined as

GsyðsÞ ¼
Nsy

hðsÞg0syðsÞ
: ð5Þ

It is noted that Gsy accounts for the nonuniform shear stiffness along the contour. For the thin-walled beam theory

considered herein, the six kinematic variables, i.e., u0ðy; tÞ; v0ðy; tÞ; w0ðy; tÞ; yxðy; tÞ; yzðy; tÞ; fðy; tÞ; that represent 1-D
displacement measures, constitute the basic unknowns of the problem. When the transverse shear effect is discarded,

Eqs. (2a) and (2b) reduce to yx ¼ �w0
0 and yz ¼ �u00: As a result, the basic unknown quantities are reduced to four.

Such a case corresponds to the unshearable, Bernoulli–Euler beam model.

The strains that contribute to the total potential energy are as follows:

Spanwise strain:

eyyðn; s; y; tÞ ¼ e0yyðs; y; tÞ þ ne1yyðs; y; tÞ; ð6aÞ

where

e0yyðs; y; tÞ ¼ v00ðy; tÞ þ y0zðy; tÞxðy; tÞ � f00ðy; tÞFwðsÞ; ð6bÞ

e1yyðs; y; tÞ ¼ �y0z
dz

ds
þ y0xðy; tÞ

dx

ds
� aðsÞf00ðy; tÞ; ð6cÞ

2-D tangential shear strain:

gsyðs; y; tÞ ¼ g0syðs; y; tÞ þYðsÞf0ðy; tÞ; ð7aÞ
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Fig. 2. Displacement field for the beam model.
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where

g0syðs; y; tÞ ¼ gxy

dx

ds
þ gyz

dz

ds
¼ ðu00 þ yzÞ

dx

ds
þ ðw0

0 þ yxÞ
dz

ds
; ð7bÞ

2-D transverse shear strain:

gnyðs; y; tÞ ¼ �gxy

dz

ds
þ gyz

dx

ds
¼ �ðu00 þ yzÞ

dz

ds
þ ðw0

0 þ yxÞ
dx

ds
: ð8Þ

In Eqs. (6) and (7), e0yy; g0sy are the normal and shear strain components on the mid-surface of the beam.

The stress resultants and stress couples can be reduced to the following expressions:

Nyy

Nsy

Lyy

Lsy

8>>><
>>>:

9>>>=
>>>;

¼

K11 K12 K13 K14

K21 K22 K23 K24

K41 K42 K43 K44

K51 K52 K53 K54

2
6664

3
7775

e0yy

g0sy

f0

e1yy

8>>>><
>>>>:

9>>>>=
>>>>;
; ð9aÞ

Nny ¼ ½A44 � A245=A55�gny; ð9bÞ

in which the reduced stiffness coefficients Kij are defined by Qin and Librescu (2002).

2.2. Unsteady aerodynamic loads for arbitrary small motion in incompressible flow

Based on strip theory and 2-D incompressible unsteady aerodynamics, the unsteady aerodynamic lift and

aerodynamic twist moment about the reference axis (in the present paper, the mid-chord locus is adopted as the

reference axis) can be expressed as (see Fig. 3):

Laeðy; tÞ ¼ r
N

UnG0ðy; tÞ � r
N

d

dt

Z b

�b

g0ðx; y; tÞx dx þ r
N

Un

Z
N

�b

gwðx; y; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � b2

p dx; ð10aÞ

Taeðy; tÞ ¼ �r
N

Un

Z b

�b

g0ðx; y; tÞx dx þ
1

2
r
N

d

dt

Z b

�b

g0ðx; y; tÞ x2 �
1

2
b2

� �
dx þ

1

2
r
N

Unb2
Z

N

�b

gwðx; y; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � b2

p dx; ð10bÞ

where Un is the free-stream speed normal to the leading edge, g0ðx; y; tÞ is the quasi-steady distributed bound vortex
intensity (on the wing), gwðx; y; tÞ is the vortex intensity in the wake, and G0ðy; tÞ is the quasi-steady circulation. From
aerodynamic potential theory, g0ðx; y; tÞ and gwðx; y; tÞ can be uniquely determined by the boundary (no-penetration)
condition and the Kutta condition (see, e.g., Katz and Plotkin, 1991, p. 428).

Expressed in the body-fixed frame (Bisplinghoff et al., 1996, Katz and Plotkin, 1991) (see Fig. 3), the vertical

displacement of the wing cross-section can be expressed as

zaðx; y; tÞ ¼ w0ðy; tÞ � fðy; tÞx; ð11Þ
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Fig. 3. Geometry of the normal cross-section.

Z. Qin, L. Librescu / Journal of Fluids and Structures 18 (2003) 43–61 47



where w0ðy; tÞ denotes the plunging displacement and fðy; tÞ being the twist about the reference axis. For the analysis of
static divergence and flutter instability, it is enough to consider only the unsteady aerodynamic loads which are related

to elastic deformation of the wing. They are:

Laeðy; tÞ ¼ � pr
N

b2 ’w0:5cðy; tÞ � 2prNUnb w0:75cðy; 0ÞfW

Unt

b

� ��
þ
Z t

0

dw0:75cðt0Þ
dt0

fW

Un

b
ðt � t0Þ

� �
dt0

�
; ð12aÞ

Taeðy; tÞ ¼ � pr
N

b3
1

2
Un

’fþ
1

8
b .f

� �
� pr

N
Unb2 w0:75cðy; 0ÞfW

Unt

b

� ��
þ
Z t

0

dw0:75cðt0Þ
dt0

fW

Un

b
ðt � t0Þ

� �
dt0

�
;

ð12bÞ

where fW is the indicial function for incompressible flow (also referred to as Wagner’s function), defined by

dfW ðtÞ
dt

þ fW ð0þÞdðtÞ ¼ L�1 K1ðpÞ
K0ðpÞ þ K1ðpÞ

� �
: ð12cÞ

In this equation, t ¼ Unt=b is the non-dimensional time, L�1 the inverse Laplace Transform operator; p the Laplace-

transform variable (i.e., the counterpart of t), dðtÞ the Dirac delta function, while K0ðpÞ and K1ðpÞ are the modified
Bessel functions of the second kind (see, e.g., Sears, 1940; Meirovitch, 1997). In Eqs. (12b) and (12c), the terms in the

curly brackets are associated with the circulatory part of the aerodynamic loads (Bisplinghoff et al., 1996; von K!arm!an

and Sears, 1938). The quantity K1ðpÞ=ðK0ðpÞ þ K1ðpÞÞ � CðpÞ is identified as the generalized Theodorsen function in the
Laplace transformed space (Venkatesan and Friedmann, 1986).

In order to cast Lae; Tae to state space form, the quasi-polynomial approximation of the lift deficiency function is used

(Bisplinghoff et al., 1996; Rodden and Stahl, 1969):

fW ðtÞ ¼ 1:0�
Xn

i¼1

ai expð�bitÞ

" #
HðtÞ; ð13Þ

where HðtÞ denotes the step function.
By denoting

Dðy; tÞ �
Z t

0

@w0:75cðy; t0Þ
@t0

fW

Unðt � t0Þ
b

� �
dt0; ð13aÞ

we get

Dðy; tÞ ¼ w0:75cðy; tÞ �
Xn

i¼1

aiBiðy; tÞ; ð13bÞ

where Biðy; tÞ satisfies

’Bi þ bi

Un

b

� �
Bi ¼ ’w0:75cðy; tÞ: ð13cÞ

In the following development, we assume that the wing starts from rest.

Compared with the methods based on the transfer function realization, the above method can easily model as many

as necessary aerodynamic lag terms into the finite state space form. It is noted that this method yields the same number

of augmented states as those provided by the Roger’s approximation method (Karpel, 1982).

The preceding results are valid for 2-D cross-section wings. For finite-span wings, the modified strip theory (Yates,

1958) that extends the 2-D aerodynamics to the 3-D case is used. As a result, in Eqs. (), (13a)–(13c), the following

changes are implemented:

2p-CLf �
dCL

df
¼

AR

AR þ 2 cosL
2p;

1

2
b-b

CLf

2p
�
1

2

� �
: ð14Þ

It is noted that only the circulatory terms in Eq. () will be modified (Yates, 1958; Rodden and Stahl, 1969). All the

geometric measures are now taken in the rotated chordwise coordinate system (see Fig. 1)

w0:75cðy; tÞ ¼ ’w0 � Unfþ Un tanL
@w0

@y
�

b

2
’fþ Un

@f
@y
tanL

� �
CLf

p
� 1

� �
; ð15aÞ

w0:5cðy; tÞ ¼ ’w0 � Unfþ Un tanL
@w0

@y
; ð15bÞ

where Un ¼ UN cosL:
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Based on these equations, the explicit expressions of unsteady aerodynamic lift and moment will be given in the

following sections.

2.3. The governing system

The governing equations and the consistent boundary conditions can be systematically derived by using the principle

of virtual work in dynamic case (Reddy, 1997, p. 144):Z t2

t1

ðdT� dUþ dWeÞ dt ¼ 0; ð16aÞ

with

du0 ¼ dv0 ¼ dw0 ¼ dyx ¼ dyx ¼ df0 ¼ 0 at t ¼ t1 and t2; ð16bÞ

where dT and dU denote the virtual kinetic and strain energy, respectively, while dWe denotes the virtual work due to

external forces. For the problem at hand, these terms are defined as follows.

Virtual kinetic energy:

dT ¼
Z L

0

I
C

Xml

k¼1

Z
hðkÞ

rðkÞ
@u

@t

� �
d

@u

@t

� �
þ

@w

@t

� �
d

@w

@t

� �
þ

@v

@t

� �
d

@v

@t

� �� �
dn ds dy; ð17Þ

Virtual Strain energy:

dV ¼
Z
t
sijdeij dt ¼

Z L

0

I
C

Xml

k¼1

Z
hðkÞ

½syydeyy þ ssydgsy þ snydgny�hðkÞ dn ds dy; ð18Þ

Virtual work due to unsteady aerodynamic loads:

dWe ¼
Z L

0

½Laeðy; tÞdw0ðy; tÞ þ Taeðy; tÞdfðy; tÞ� dy; ð19Þ

where Lae (positive upward) is the unsteady aerodynamic lift per unit span and Tae (positive nose-up) unsteady

aerodynamic twist moments about the reference axis (see Eqs. (12a) and (12b)). It is recalled that for the analysis of

aeroelastic instabilities, only unsteady aerodynamics need be considered.

In order to study the aeroelastic instability, an aircraft wing featuring biconvex cross-section and experiencing the

bending–twist coupling is considered. To this end, the circumferentially asymmetric stiffness (CAS) lay-up (see, e.g.,

Rehfield et al., 1990) is adopted. As demonstrated by Librescu and Song (1991) and Song and Librescu (1993), this type

of beam features the following two sets of independent elastic couplings:

(i) transversal bending/twist/vertical transverse shear

ðw0;f; yxÞ;
(ii) extension/lateral bending/lateral transverse shear

ðu0; v0; yzÞ:

Also, the unsteady aerodynamic loads and the inertia forces of the beams are completely split into the preceding two

groups, hence the total equations of motion and the boundary conditions are completely decoupled. The equations of

motion of the first group that are of interest for the present problem are:

dw0 : Q0
z þ Lae � b1 .w0 ¼ 0; ð20aÞ

df : M 0
y � B00

w þ Tae � ðb4 þ b5Þ .fþ ðb10 þ b18Þ .f00 ¼ 0; ð20bÞ

dyx : M 0
x � Qz � ðb4 þ b14Þ.yx ¼ 0: ð20cÞ

The boundary conditions are as follows:

at y ¼ 0; w0 ¼ 0; f ¼ 0; f0 ¼ 0; yx ¼ 0;

at y ¼ L; Qz ¼ 0; �B0
w þ My þ ðb10 þ b18Þ .f0 ¼ 0; Bw ¼ 0; Mx ¼ 0: ð21Þ
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In Eqs. (20) and (21), Mx; Qz; Bw; My are the 1-D stress resultant and stress couple measures that are defined as

Mxðy; tÞ ¼
I

C

zNyy þ Lyy
dx

ds

� �
ds; Qzðy; tÞ ¼

I
C

Nsy
dz

ds
þ Nny

dx

ds

� �
ds;

Bwðy; tÞ ¼ �
I

C

½FwðsÞNyy þ aðsÞLyy� ds; Myðy; tÞ ¼
I

C

NsyYðsÞ ds: ð22Þ

The inertia coefficients b1; b4; b5; b10; b14; b15; b18 are defined in Appendix A.

For bi-convex cross-section thin-walled beams with CAS lay-up, the force–displacement relations are:

Mx

Qz

Bw

My

8>>><
>>>:

9>>>=
>>>;

¼

a33 0 0 a37

0 a55 a56 0

0 a56 a66 0

a37 0 0 a77

2
6664

3
7775

y0x
ðw0
0 þ yxÞ

f00

f0

8>>><
>>>:

9>>>=
>>>;
: ð23Þ

For the free warping model (see, e.g., Librescu and Song, 1991; Song and Librescu, 1993; Na, 1997), the force–

displacement relations are

Mx

Qz

Bw

My

8>>><
>>>:

9>>>=
>>>;

¼

a33 0 a37

0 a55 0

0 a56 0

a37 0 a77

2
6664

3
7775

y0x
ðw0
0 þ yxÞ

f0

8><
>:

9>=
>;: ð24Þ

For the unshearable beam model (Librescu and Song, 1991; Song and Librescu, 1993; Na, 1997), the force–

displacement relations are

Mx

Qz

Bw

My

8>>><
>>>:

9>>>=
>>>;

¼

a33 0 a37

0 a55 0

0 a56 0

a37 0 a77

2
6664

3
7775

�w00
0

f00

f0

8><
>:

9>=
>;: ð25Þ

In terms of the basic unknowns, the governing equations that include the effects of warping restraint and transverse

shear are:

dw0 : a55ðw00
0 þ y0xÞ þ a56f

000 þ Lae � b1 .w0 ¼ 0; ð26aÞ

df : a37y
00
x þ a77f

00 � a56ðw000
0 þ y00xÞ � a66f

ðIVÞ þ Tae � ðb4 þ b5Þ .fþ ðb10 þ b18Þ .f00 ¼ 0; ð26bÞ

dyx : a33y
00
x þ a37f

00 � a55ðw0
0 þ yxÞ � a56f

00 � ðb4 þ b14Þ.yx ¼ 0: ð26cÞ

The associated boundary conditions are:

at y ¼ 0;

w0 ¼ 0; f ¼ 0; f0 ¼ 0; yx ¼ 0; ð27aÞ

at y ¼ L;

dw0 : a55ðw0
0 þ yxÞ þ a56f00 ¼ 0;

df : �a56ðw00
0 þ y0xÞ � a66f

000 þ a37y
0
x þ a77f

0 ¼ �ðb10 þ b18Þ .f0;

df0 : �a56ðw0
0 þ yxÞ � a66f00 ¼ 0;

dyx : a33y0x þ a37f0 ¼ 0: ð27bÞ

In Eqs. (26) and (27), the terms underscored by double solid lines are associated with the warping inhibition effect,

whereas the term underscored by a single solid line identifies the rotatory inertia effect (see, e.g., Song, 1990; Librescu

and Song, 1991; Song and Librescu, 1993).
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For the unshearable beam model, the pertinent governing equations are:

dw0 : �a33w
ðIVÞ
0 þ a37f000 þ Lae � b1 .w0 þ ðb4 þ b14Þ .w00

0 ¼ 0; ð28aÞ

df : �a37w
000
0 þ a77f

00 � a66f
ðIVÞ þ Tae � ðb4 þ b5Þ .fþ ðb10 þ b18Þ .f00 ¼ 0; ð28bÞ

and the boundary conditions:

at y ¼ 0;

w0 ¼ 0; w0
0 ¼ 0; f ¼ 0; f0 ¼ 0; ð29aÞ

at y ¼ L;

dw0 : a33w
000
0 � a37f

00 � ðb4 þ b14Þ .w0
0 ¼ 0;

dw0
0 : �a33w

00
0 þ a37f

0 ¼ 0;

df : a66f
000 þ a37w

00
0 � a77f

0 � ðb10 þ b18Þ .f0 ¼ 0;

df0 : a66f
00 ¼ 0: ð29bÞ

It is noted that equations similar to Eqs. (28a) and (28b) obtained for solid beams have been used for static

aeroelastic response (Librescu and Simovich, 1988; Librescu and Thangjitham, 1991).

The unsteady aerodynamic lift and twist moment are expressed as

Laeðy; tÞ ¼ � pr
N

b2 ’w0:5cðy; tÞ � CLfrNUnb w0:75cðy; tÞ �
Xn

i¼1

aiBi

" #

¼ � pr
N

b2 .w0 þ Un
@2w0
@y@t

tanL� Un
’f

� �

� CLfrNUnb ’w0 � Unfþ Un
@w0

@y
tanL�

b

2

CLf

p
� 1

� �
’fþ Un

@f
@y
tanL

� �
�

Xn

i¼1

aiBi

" #
; ð30aÞ

Taeðy; tÞ ¼ � pr
N

b3
1

2
Un

’fþ
1

8
b .f

� �
�
1

2
CLfrNUnb2 w0:75cðy; tÞ �

Xn

i¼1

aiBi

" #

¼ � pr
N

b3
1

2

CLf

p
� 1

� �
Un

’fþ U2
n

@f
@y
tanL

� �
þ
1

8
b .fþ Un

@2f
@y@t

tanL
� �� �

�
1

2
CLfrNUnb2 ’w0 � Unfþ Un

@w0

@y
tanL�

b

2

CLf

p
� 1

� �
’fþ Un

@f
@y
tanL

� �
�

Xn

i¼1

aiBi

" #
: ð30bÞ

In Eqs. (30a) and (30b), Bi satisfies Eq. (13b).

3. Solution methodology and validation

Due to the nonconservative nature of the eigenvalue problem and the complexities arising from the anisotropy of the

constituent materials and the boundary conditions, nondimensionalization and spatial semi-discretization techniques

are adopted and the governing equations are cast into state-space form. The spatial semi-discretization is based on the

extended Galerkin’s method (EGM) (see, e.g., Librescu and Na, 1998; Palazotto and Linnemann, 1991). The conversion

of the governing equations into state-space form is prompted by the fact that for a general nonconservative system, the

solution requires a state-space description (Meirovitch, 1997, pp. 206–210) and the classical modal analysis based on

complex eigensystem does not yield an efficient solution. It is also noted that the Laplace-transform method (LTM) can

only be efficiently applied to sufficiently low-order systems. For the problem being addressed here, LTM is not the most

appropriate.
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3.1. State-space form of the governing equations

Introducing the following nondimensional parameters:

Z � y=L; t � Unt=b; AR � L=b; #w0ðZ; tÞ � w0=2b;

#fðZ; tÞ � fðZ; tÞ; #yxðZ; tÞ � yxðZ; tÞ; dð	Þ=dt ¼ ðb=UnÞdð	Þ=dt; ð31Þ

and performing the following spatial semi-discretization:

#w0ðZ; tÞ ¼ #WT
wðZÞ#qwðtÞ; #fðZ; tÞ ¼ #WT

fðZÞ#qfðtÞ; #yxðZ; tÞ ¼ #WT
x ðZÞ#qxðtÞ; ð32Þ

where the shape functions #WwðZÞ; #WfðZÞ; and #WxðZÞ are only required to fulfill the geometric boundary conditions (see
Appendix B for details), we get the state-space form of the preceding aeroelastic governing equations:

’#xs

’#xa

( )
¼

As Bs

BaAs Aa þ BaBs

" #
#xs

#xa

( )
; ð33Þ

or in a more compact form, as

’#X ¼ A #X: ð34Þ

In Eq. (33), #xs and #xa are 2m � 1; nm � 1 vectors, which describe the motion of the wing and the unsteady aerodynamic
loads on the wing, respectively. The details of the matrices and vectors in Eq. (33) are listed in Appendix B.

3.2. Static and dynamic aeroelastic instabilities

Based on Eq. (34), as described in the following, the divergence and flutter problems are solved simultaneously.

Simultaneous solution of divergence and flutter is particularly convenient to aeroelastic analysis of swept composite

aircraft wings. In order to address the static divergence of restrained wings, the unsteady aerodynamic terms related to

the time derivatives will be discarded. Based on Eq. (34), the static aeroelastic governing equations reduce to

kr %Ks þ
1

8m0
%Kae

� �
#q ¼ 0: ð35Þ

Static divergence corresponds to the minimum flight speed that causes Eq. (35) to have nontrivial solutions.

Flutter corresponds to an eigenvalue problem. Assuming the solution in the form #X � %Xelt; we get

ðlI� AÞ %X ¼ 0; ð36Þ

where l ¼ lRe þ jlIm: The flutter solution corresponds to the minimum flight speed that renders the system to transit
from stable (dynamic) motion to unstable (dynamic) motion. At such a critical state, lRe ¼ 0; the imaginary part lIm
corresponds to the flutter frequency. It is interesting to note that if the eigenvalue solution of Eq. (36) has a root of

lRe > 0; lIm ¼ 0; such an unstable root corresponds to divergence instability. Put another way, the eigenvalue solution
of Eq. (36) can capture both static divergence and flutter instabilities.

3.3. Validation of the aeroelastic system model

The thin-walled beam model adopted herein has been validated by Qin and Librescu (2001, 2002). As to validate the

accuracy of the aeroelastic model developed so far, several special cases are considered. The material and geometric

characteristics of the wing used in this paper are listed in Table 1. As a first step, Goland’s wing (Goland and Luke,

1948) is used to validate the accuracy of the flutter analysis. The results as compared in Table 2 reveal that the

correlation of the present predictions with the exact results is excellent. As a second step, comparison of the flutter

results by using the V–g method and the transient method is conducted, and the results are listed in Table 3. It is noted

that the Theodorsen function used in the V–g method is approximated (see, e.g., Gern and Librescu, 1998; Lottati,

1985) by

CðkÞ ¼F ðkÞ þ jGðkÞ

¼
0:021573þ 0:210400k þ 0:512607k2 þ 0:500502k3

0:021508þ 0:251239k þ 1:035378k2 þ k3

� j
0:001995þ 0:327214k þ 0:122397k2 þ 0:000146k3

0:089318þ 0:934530k þ 2:481481k2 þ k3
: ð37Þ
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Here, k is the reduced frequency, while Wagner’s function is approximated by Jones’ quasi-polynomial formulas

(Bisplinghoff et al., 1996; Rodden and Stahl, 1969). The differences of the flutter speed and flutter frequency as

predicted by these two methods are well within the approximations of the Theodorsen and Wagner’s functions.

However, it is interesting to note that the unstable eigenmode revealed by these two methods is quite different, as shown

in Figs. 4 and 5. In Fig. 4 (via the transient method), it is shown that for the given wing, the unstable eigenmode is

mode 1; while in Fig. 5 (via the V–g method), it is shown that for the same wing, the unstable eigenmode is mode 2.

4. Numerical illustrations and discussion

The aeroelastic model developed so far can be used to investigate the aeroelastic behavior of anisotropic composite

aircraft wings. However, to conduct extensive parametric studies of such a type of aircraft wings is beyond the scope of

the present article. In this section, the influence of anisotropy, warping restraint and transverse shear on the most

critical speed (in the sense of the lowest critical speed between flutter and divergence) will be investigated. It is recalled

that the divergence and flutter instabilities are simultaneously considered by the transient method.

Fig. 6 displays the most critical flight speed of an aircraft wing when the control parameter y varies from 0 to 90:
Due to the symmetry with respect to y ¼ 90; only the plot in the range of ½0; 90� is displayed. It is noted that: (i)
within the range 8pyp37; divergence becomes the most critical, while (ii) within the range 45pyp75; the flutter
becomes the most critical and the flutter speed is much higher than the reference speed. These two phenomena can be
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Table 2

Comparison of the flutter results of Goland’s Wing

Method Flutter speed Errora Flutter frequency Errora

(km/hr) (%) (Hz) (%)

Exact (Goland and Luke, 1948) 494.1 — 11.25 —

Present ðN ¼ 9Þ; Transient method 494.5 0.08 11.04 �1.87
Present ðN ¼ 9Þ; V–g method 493.2 �0.18 11.15 �0.89
Present ðN ¼ 7Þ; V–g method 493.1 �0.20 11.15 �0.89
Housner and Stein (1974) 483.1 �2.23 11.27 0.18

Patil and Hodges (2000) 488.3 �1.17 11.17 �0.71
Gern and Librescu (1998) ðN ¼ 7Þ 493.6 �0.10 12.02 6.84

aRelative error, ð½approximated� � ½exact�Þ/[exact].

Table 1

Material properties and geometric characteristics of a wing featured by CAS lay-up and biconvex cross-section

Value

Material

E11 206:8� 109 N=m2

E22 ¼ E33 5:17� 109 N=m2

G13 ¼ G23 2:55� 109 N=m2

G12 3:10� 109 N=m2

m12 ¼ m13 ¼ m23 0.25

r 1:528� 103 kg=m3

Geometric

Width (2ba) 0:259 m
Depth (2da) 0:034 m
Number of layers 7

Layer thickness 0:00123 m

aThe length is measured on the contour line.
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explained on the basis of the concept of washin/washout and the stiffness characteristics as displayed in Fig. 7. When y
is in the range 8pyp37; the elastic coupling a37 will generate nonnegligible washin, which, as is well known, leads to

a low divergence speed. When y is in the range 45pyp75; the elastic coupling a37 generates a washout effect, which

suppresses the onset of divergence. The high flutter speed in this range of y can be explained by the high twist ða77Þ and
bending stiffness ða33Þ: Similarly, the low flutter speed at y ¼ 0 is due to low stiffness in twist and bending, while the
low flutter speed at y ¼ 90 is entirely due to the low twist stiffness.
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Table 3

Comparison of the flutter results by the transient method and V–g method

Method lF ¼ VF=ðbohrÞ OF ¼ oF=ohr VF (m/s) oF (rad/s)

Transient method 53.75 7.53 235.05 87.12

V–g method 53.74 7.57 235.00 87.58

Fig. 4. Flutter analysis of a wing ðAR ¼ 16; ½1056�; b ¼ 0:3785 m; d ¼ 0:05 m; L ¼ 0; h ¼ 0:01 mÞ by the transient method.

Fig. 5. Flutter analysis of a wing ðAR ¼ 16; ½1056�; b ¼ 0:3785 m; d ¼ 0:05 m; L ¼ 0; h ¼ 0:01 mÞ by the V–g method.
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It is well-known that swept-forward wings feature washin effect (Shirk et al., 1986), as revealed by the expression of

static effective angle at the three-quarter chordwise location (measured from the leading edge):

feff � �
w0:75c

Un

¼ f�
@w0

@y
tanLþ

CLf

f
� 1

� �
b

2

@f
@y
tanL ð38Þ

which is derived from Eq. (15a) by discarding the terms associated with time derivatives. Fig. 8 displays the combined

influence of the wing sweep and elastic coupling on the most critical aeroelastic instability of a swept-forward wing. It is

readily seen that in this case, the washin effect induced by the sweep angle L ¼ �30 exceeds the washout effect induced
by the elastic coupling a37 when 45

pyp90; and the divergence is the most critical one over the entire range
0pyp90: The maximum divergence speed occurring at y ¼ 60 (about 3.5 times higher than the reference speed!) can
be explained by the fact that, on the one hand, the washout effect induced by a37 reaches its maximum and, on the other

hand, that the twist stiffness also reaches its maximum. It is also interesting to note that although the twist stiffness a77
and the elastic coupling stiffness a37 at y ¼ 90 are equal to those at y ¼ 0; the most critical speed at y ¼ 90 is about
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Fig. 6. Variation of the most critical flight speed of an aircraft wing versus the control parameter y ðAR ¼ 12; ½2y=y=� y=0�s;
L ¼ 0Þ: m; flutter;\; divergence; Vref � Vcrjy ¼ 0 :

Fig. 7. Cross-sectional stiffness characteristics of an anisotropic composite aircraft wing ð½2y=y=� y=0�sÞ:
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2.7 times its counterpart at y ¼ 0: This, again, can be explained by the washout effect as revealed by Eq. (38): from Fig.
7, the bending stiffness a33 at y ¼ 90 is much larger than that at y ¼ 0; therefore, the washout generated in the case of
y ¼ 90 will be much less than its counterpart in the case of y ¼ 0:
Figs. 9 and 10 display the influence of warping restraint and transverse shear on the aeroelastic instabilities. In Fig. 9,

flutter is the most critical; while in Fig. 10, divergence is the most critical. In both figures, the significant influence of

warping restraint on the flutter and divergence speed is revealed, that is: 20% increase of flutter speed when AR ¼ 6 (see
Fig. 9), and 12% increase of divergence speed when AR ¼ 6 (see Fig. 10). Even for large aspect ratio wings, e.g.,
AR ¼ 14; there is still about 5% increase of the most critical speed compared with the prediction by the free warping

model. In contrast to such a significant influence of warping restraint on divergence and flutter, the transverse shear has

a marginal influence on the most critical speeds in these two cases (about 3% or less difference from the prediction by

discarding the transverse shear). However, it is quite remarkable to note that in Fig. 9 the discard of transverse shear

yields lower flutter speed than otherwise, while in Fig. 10 discarding the transverse shear predicts, inadvertently, higher
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Fig. 8. Combined influence of sweep angle and elastic coupling on divergence of a swept-forward wing ðAR ¼ 12; ½2y=y=�
y=0�s; L ¼ �30Þ; Vref � Vcrjy ¼ 0 :

Fig. 9. Influence of warping restraint and transverse shear on flutter of an aircraft wing ðL ¼ 0; ½0=902=0�sÞ; Vref is defined as Vcr;
predicted by the FW+TS model.
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divergence speed. For the former case, it is safe to discard the transverse shear from the point of view of design, while in

the latter case, the discard of the transverse shear yields an inadvertent overestimation of the divergence instability. It is

scrutinized that this higher predicted divergence speed in Fig. 10 (although the amplitude of the difference is marginal)

can be explained by the characteristic of elastic coupling a37; which is displayed in Fig. 11: at y ¼ 75; a37 generates

washin effect (i.e., increase of w0 will induce nose-up twist f; see Eq. (28)), therefore, discarding the transverse shear in
such a case tends to nullify the washin effect, hence leading to higher divergence speed.

5. Conclusions

An encompassing aeroelastic model of anisotropic composite wings in the form of a thin-walled beam has been

developed and validated. Due to the large number of involved parameters, extensive parametric studies are beyond the

scope of the present article. Instead, only a few cases related to the influence of anisotropy, warping restraint and
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Fig. 10. Influence of warping restraint and transverse shear on divergence of an aircraft wing ðL ¼ 0; ½757�Þ; Vref is defined as Vcr;
predicted by the FW+TS model.
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Fig. 11. Cross-sectional stiffness characteristics of an anisotropic composite aircraft wings ð½y7�Þ:

Z. Qin, L. Librescu / Journal of Fluids and Structures 18 (2003) 43–61 57



transverse shear on the most critical speed have been actually investigated. The major conclusions from these studied

cases are as follows.

(i) the directionality property of anisotropic composite materials plays a complex role on the aeroelastic instability;

however, as revealed by the cases studied, this complex role can be explained by well established aeroelastic

concepts such as washin, washout, twist/bending stiffness and coupling among them.

(ii) the warping restraint effect has a significant influence on both the flutter and divergence speeds when the aspect

ratio is moderate ð6pARp10Þ: This effect should be considered in the design process.
(iii) in the cases studied in the present article, it appears that transverse shear deformation has a marginal influence on

the aeroelastic instability. However, the results show that the discard of transverse shear does not always yield

conservative predictions.

Appendix A. Expression of 1-D stiffness and the inertia coefficients

The global stiffness quantities aijð¼ ajiÞ and inertia terms bi related to the problem are defined as

a33 ¼
I

C

z2K11 þ 2z
dx

ds
K14 þ

dx

ds

� �2
K44

" #
ds; a37 ¼

I
C

zK13 þ
dx

ds
K43

� �
ds;

a55 ¼
I

C

dz

ds

� �2
K22 þ

dx

ds

� �2
%A44

" #
ds; a56 ¼ �

I
C

Fw
dz

ds
K21 þ aðsÞ

dz

ds
K24

� �
ds;

a66 ¼
I

C

½F2wK11 þ 2FwaðsÞK14 þ aðsÞ2K44� ds; a77 ¼
I

C

YðsÞK23 ds;

where Kij are the reduced stiffness coefficients and %A44 ¼ A44 � A245=A55:
The inertia coefficients in Eq. (20) are defined as

b1 ¼
I

C

m0 ds; ðb4; b5Þ ¼
I

C

ðz2; x2Þm0 ds; b14 ¼
I

C

m2
dx

ds

� �2
ds;

b15 ¼
I

C

m2
dz

ds

� �2
ds ðb10; b18Þ ¼

I
C

ðm0F2wðsÞ;m2a
2ðsÞÞ ds;

in which

ðm0;m2Þ ¼
Xml

k¼1

Z hþðkÞ

h�
ðkÞ

rðkÞð1; n
2Þ dn:

Appendix B. Definition of matrices in Eq. (33)

The definitions are simply listed, as follows.

½A� ¼
As Bs

BaAs Aa þ BaBs

" #
; ½As�2m�2m ¼

0m�m Im�m

� %M�1
n

%Kn � %M�1
n

%Cn

" #
;

½Bs�2m�nm ¼
0m�nm

1

8m0
%M�1

n ½a1Im�m?anIm�m�m�nm

2
64

3
75;

½Aa�nm�nm ¼

�b1Im�m

&

�bnIm�m

2
64

3
75; ½Ba�nm�2m ¼

Im�m

^

Im�m

2
64

3
75

nm�m

½D1 D2�m�2m;
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%Mn ¼ HTð %Ms þ
1

8m0
%MaeÞH; %Cn ¼

1

8m0
HT %CaeH;

%Kn ¼ HTðkr %Ks þ
1

8m0
%KaeÞH;

D1 ¼
CLf

p
HT

w

2

AR
tanL

Z 1

0

#Ww
#W
0T
w dZHw �

Z 1

0

#Ww
#WT
f þ

CLf

p
� 1

� �
tanL
2AR

#Ww
#W
0T
f dZHf

� �� �

þ
CLf

2p
HT

f
1

AR
tanL

Z 1

0

#Wf
#W
0T
w dZHw �

1

2

Z 1

0

#Wf
#WT
f þ

CLf

p
� 1

� �
tanL
2AR

#Wf
#W
0T
f

� �
dZHf

� �
;

D2 ¼
CLf

p
HT

w 2

Z 1

0

#Ww
#WT

w dZHw �
1

2

CLf

p
� 1

� �Z 1

0

#Ww
#WT
f dZHf

� �

þ
CLf

2p
HT

f

Z 1

0

#Wf
#WT

w dZHw �
1

4

CLf

p
� 1

� �Z 1

0

#Wf
#WT
f dZHf

� �
;

%Ms ¼
Z 1

0

#Ww
#WT

w 0 0

0 #It
#WfWT

f þ #Iw
#W0
f
#W
0T
f 0

0 0 #r2 #Wx
#WT

x

2
664

3
775 dZ;

%Ks ¼
Z 1

0

4

AR2
#W0

w
#W
0T
w

2

AR
m1c14 #W

0
w
#W
00T
f

2

AR
#W0

wWT
x

4

AR2
m1m2 #W

00
f
#W
00T
f þ m1c12 #W

0
f
#W
0T
f m1c14 #W

00
f
#WT

x þ m1c13 #W
0
f
#W
0T
x

symm ðm1 #W
0
x
#W
0T
x þ #Wx

#WT
x Þ

2
666664

3
777775 dZ;

%Mae ¼
Z 1

0

2 #Ww
#WT

w 0 0

0
1

16
#Wf

#WT
f 0

0 0 0

2
6664

3
7775 dZ;
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Z 1

0

2

AR
tanL #Ww

#W
0T
w þ

2CLf

p
#Ww

#WT
w � 1þ

CLf

2p
CLf

p
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� �� �
#Ww

#WT
f 0

CLf
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#WT
w

1

16AR
tanL #Wf

#W
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p
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� �
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CLf

2p

� �
#Wf

#WT
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0 0 0
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7777777775
dZ;

%Kae ¼
Z 1

0

2CLf

pAR
tanL #Ww

#W
0T
w �

CLf

p
#Ww

#WT
f �

CLf

2pAR

CLf

p
� 1

� �
tanL #Ww

#W
0T
f 0

CLf

2pAR
tanL #Wf

#W
0T
w �

CLf

4p
#Wf
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f þ 1�

CLf

2p

� �
CLf

p
� 1

� �
tanL
4AR

#Wf
#W
0T
f 0

0 0 0

2
666664

3
777775 dZ:

In the above expressions, #WwðZÞ; #WfðZÞ; and #WxðZÞ are shape function vectors (with dimension N � 1) which are
required to only fulfill the geometric boundary conditions. For the model incorporating both the warping restraint and

transverse shear (i.e., WR+TS model), #WwðZÞ ¼ ½Z; Z2; y; ZN �T; #WfðZÞ ¼ ½Z2; Z3; y; ZNþ1�T; #WxðZÞ ¼ ½Z; Z2; y; ZN �T

are adopted in the article. Hw; Hf; Hx are N � m eigenvectors and H � ½HT
w HT

f HT
x �
T:
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Appendix C. Nondimensional parameters

The nondimensional parameters used in the text and Appendix B are defined as

m0 ¼
b1

pr
N
ð2bÞ2

; m1 ¼
a33

a55L2
; m2 ¼

a66

a33ð2bÞ
2
; o2h ¼

a33

b1L4
;

ohr ¼ ohjy¼p=2; #r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb4 þ b14Þ

b1L2

s
; c12 ¼

a77

a33
; c13 ¼

a37

a33
;

c14 ¼
a56

a33
; #It ¼

ðb4 þ b5Þ

ð2bÞ2b1
; #Iw ¼

ðb10 þ b18Þ

L2ð2bÞ2b1
; kr ¼

a55

4b1U2
n

:
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